Range-based navigation system for a mobile robot

Neil MacMillan, River Allen, Dimitri Marinakis, Sue Whitesides
Department of Computer Science, University of Victoria

neilrgm@gmail.com,

Abstract—In this paper we present an algorithm for path
planning in a fixed range-only beacon field. We define and
calculate entropy values for regions of interest and provide a
method for finding “safe,” low-entropy paths between regions.
We go on to describe a robotic system for performing range-
based localization experiments, developed using inexpensive off-
the-shelf components. Our system uses a commercial robot as a
mobile platform and custom acoustic beacons for ranging.

Keywords-robot localization, range sensors, robot path plan-
ning, Bayesian filtering

I. INTRODUCTION

In the future, it can be expected that mobile robots will
continue to be applied to automated tasks in indoor industrial
settings, e.g. see the work of Wurman er al. [1]. Given
the widespread prevalence of wireless sensor networks for
automated data acquisition and control purposes it is likely
a typical industrial environment will have a priori, statically
deployed wireless devices that can be used by a mobile robot
as landmarks with unique signatures (e.g. based on their Media
Access Control (MAC) identifiers).

In this paper we investigate approaches that can allow
a mobile robot to exploit information provided by wireless
devices already present in the environment. We examine a
case in which the robot is assumed to be carrying out a
routine task that requires it to navigate arbitrarily between a
finite number of specified locations, e.g. for the transporting of
goods in a warehouse application. Under these circumstances,
we are interested in identifying safely navigable regions and
routes in the instrumented environment that can allow the
robot to successfully satisfy the requirements of its task. By
safely navigable regions we mean areas where the robot’s pose
uncertainty is relatively low. We use informational entropy to
quantify uncertainty; this is related to the idea of using regions
of high information content to aid navigation discussed by Roy
and Thrun [2]. A region of low entropy is considered safely
navigable. We use the term navigation graph to refer to a set
of paths between safely navigable regions.

We assume only that the robot can: 1) determine a range
estimate to beacons in the environment and 2) use odometry
information to aid its pose estimate. For our investigations
we use a custom range-based navigation system designed
around a simple commercial robot and off-the-shelf, wireless
components (Figure 1).

The contributions of this paper include:

1) an algorithm for constructing a navigation graph that can

aid path planning in circumstances of normal operation
for robots with minimal sensing capabilities;

riverallen@gmail.com,

sue@uvic.ca

dmarinak@gmail.com,

Fig. 1. (a) iRobot Roomba instrumented with navigation components and
(b) time-difference-of-arrival ranging beacon.

2) a detailed presentation of the system details necessary
to architect a range-based robot navigation system using
affordable, off-the-shelf, components.

In the remainder of this paper we first present our problem
formulation and our path planning algorithm. We then proceed
to describe our experimental platform, and conclude with
simulation and experimental results.

II. BACKGROUND

Previous work co-authored by one of us (Marinakis) looks at
localization issues in ‘hybrid’ systems that combine both static
sensors and a mobile robot [3], [4]. The approach assumes that
the locations of the static sensors are unknown a priori and

uses Markov Chain Monte Carlo (MCMC) based algorithms
to find a probability distribution function (PDF) for both the
sensor locations and robot positions. The work assumes that in
such a hybrid system the robot will continue to operate in the
region of the sensor network and that therefore it is reasonable
to expend computational effort up front to later facilitate
accurate on-line localization. In the work we present in this
paper we continue to examine hybrid sensor networks and
mobile robot localization systems, but make the differentiating
assumption that the sensor locations are known ahead of time.

The concept of evaluating the localizing accuracy available
at various regions in the environment has been considered
before. Prior work such as that by Jourdan and Roy [5]
consider how to deploy a network of static ranging bea-
cons (sensors) for mobile robot localization. They present
an algorithm capable of finding an optimal deployment for
minimizing the maximum lower bound on the localization
accuracy at a single point and show that their approach also
works well in practice for finding deployments that provide
good localization over a predetermined path. This differs from
the problem we consider, in which we wish to find safe
paths among specified regions in the environment given a pre-
deployed network.

Jourdan and Roy [5] use the Cramer-Rao bound (CRB) on
the localization uncertainty as the key metric used to judge
relative localization accuracy among different regions. This is
a common approach and is also used in the related areas of
mobile target tracking, e.g., the work of Martinez and Bullo
[6], and in sensor network localization, e.g., Savvides et al. [7].
Under simple beacon assumptions such as unlimited range, the
relative CRB is proportional to the relative geometric dilution
of precision [5]. The derivation of the CRB can be challenging,
however, for some beacon assumptions; see Jourdan et al. [8]
for a result appropriate for ultra-wide bandwidth ranging. In
the work we present in this paper, we use a direct estimate
of the entropy in the robot’s PDF given its true location as
a metric of localization accuracy. This allows us to use an
arbitrary beacon model. '

Related work by Batalin et al. [9] considers robot navigation
using a sensor network of known position. The approach uses
radio signal strength to guide the robot to regions in the
network proximal to destination nodes. Conceptually similar
work by Verma et al. [10] presents a system that uses a
network of pre-deployed devices to construct a navigation field
through the broadcasting of packets. The navigation field is
used to guide a robot to areas of interest in the region of the
network.

Sampling based motion planning approaches based on the
classic paper of Kavraki et al. [11] aim to build a road
map consisting of free configurations in the configuration
space of a robot moving in an obstacle-cluttered environment,
with free configurations joined by edges (i.e. straight line
segments) consisting entirely of collision-free positions. If

ILater we derive a closed form solution specific to a normally distributed
error model. This result gives us a computational speed up, but is not critical
to the overall approach.

a road map with reasonable coverage of the free space of
configurations can be built in a preprocessing step, then it
should be possible to join start and goal configurations to
the road map; if they lie in the same connected component,
then a collision-free path can be determined relatively quickly.
A large body of literature elaborates this approach (see [12]
ch. 5). The objective is primarily to find a collision free
path. Our approach likewise precomputes a map; however,
the objective is to find good paths amongst regions known to
be of interest, where “goodness” is determined by a measure
of robot localization ease and likelihood of traversing a path
successfully.

Potential function methods (see LaValle [12]) direct robots
to travel in a direction that reduces some potential function.
Functions that are guaranteed not to trap the robot in a
local minimum are called navigation functions. Again, these
methods aim to find a path from a start to a goal.

Many graph model approaches to path planning use vertices
to represent cells in a cell decomposition of configuration
space or physical space [12]. If cell adjacencies are known, and
methods for moving within a cell are available, then finding
a path becomes a graph theoretic problem. Graph edges may
be weighted, and Dijkstra’s classic shortest-path algorithm can
be used.

By contrast, our graph theoretic model does not decompose
the physical space. Rather, it associates vertices with regions
within which the robot can be localized accurately as well as
regions to which the robot will often be commanded to travel,
and associates edges with routes between these regions that are
believed to be fairly reliable. Thus the focus is not on finding
a path, but rather, on finding what we call a navigation graph,
i.e., a reliable set of paths that connect regions of frequent
operation for the robot. Once precomputed, the navigation
graph may be used repeatedly to provide recommended routes
for reliable travel between regions of operation shown on the
map.

III. THE NAVIGATION GRAPH

We consider the problem of constructing a navigation graph
G = (V,E) for a beacon-instrumented environment suitable
for pragmatically aiding higher level processes such as long
term path-planning.

The vertices V = RUT of the navigation graph G represent
regions of interest in the environment. Our regions of interest
include both initially provided operating regions R in the
environment that the robot will be expected to visit during
routine operations, and additional locations IV (from which
I' is selected to form () that allow the robot to navigate
between the operating regions using straight-line transits. The
edges E = {e;;} of the navigation graph G represent paths
through the graph weighted in proportion to the cost of the
path between the two neighbouring vertices.

Once a cost-weighted navigation graph is constructed for
an environment, it can be used for fast, on-line path planning
purposes. For example, to plan a route between any two
regions, one can apply Dijkstra’s algorithm in |V'|log(|V])

time [13] to find a suitable path along the edges of the
navigation graph.

One can also use the navigation graph obtained from a
given set of beacon locations and operations regions to assess
the likelihood of operational feasibility. For example, one
could construct an unweighted graph G* by selecting only
the edges in G that are under a desired edge cost threshold.
An unconnected G* would then suggest unsuitability. 2

IV. ALGORITHM FOR NAVIGATION GRAPH
CONSTRUCTION

In this section we present an approach for constructing a
navigation graph suitable for an environment instrumented
with uniquely identifiable beacons of known location from
which range estimates can be obtained. We take the following
high level steps:

1) Estimate a discretized entropy map of the environment;

2) Draw samples of candidate navigation locations (z,y)
from I';

3) Estimate the navigation cost between each pair of loca-
tions in RUTY;

4) Produce an initial navigation graph G’ in which the
vertices are RUT";

5) For each pair of operating regions 7;,7; € R find the
lowest cost path p;;;

6) Construct a final navigation graph G = R U I using
P = Upij, where I is the set of navigation locations
from I that are used by at least one lowest cost path in
P.

In the next sections we provide some more details on our
approach.

A. Beacon Model

A fundamental input to our approach is a beacon model that
specifies when the range to a beacon can typically be obtained
and what error is associated with a range estimate when one
is obtained. We make the following assumptions:

1) Each beacon position is specified by a location and
orientation (X, y, 6), i.e. its pose;

2) A range estimate to the beacon can be obtained by the
robot if the true distance of the robot to the beacon is
less than the beacon’s maximum range A, and the angle
« between the beacon and the robot is within an angular
range f; i.e. « € (0 — 5,0 + B) ;

3) Range estimates have zero-mean, normally distributed
noise added to them; i.e. r = 7/ + N(0,0) where r is
the distance estimate, 7’ is the true distance and o is the
variance of the noise.

B. Entropy Map

Given the beacon model specified in section IV-A, we
compute a grid map of the environment where the value of
each grid square gives an estimate of the entropy of the PDF

2From G one could infer such system statistics such as the mean time
between failure etc.

for the robot’s position should its true location be the grid
square.

First let us consider the question of the uncertainty in the
robot’s pose given a single observation of the range r to the
beacon and the beacon model specified above (analogous to a
measurement model). From Bayes’ Law we have:

_ p(r|z)p(z)
p($|’l") - p(?“)

o p(rlz) (1)

where z is the position of the robot and we assume a
constant prior over the robot’s position and data. By apply-
ing Equation 1 one can obtain an estimate of the PDF X
for the robot using an occupancy grid over the area being
considered. The PDF X = {p(x;;)} where p(x;;) gives
the relative probability of the robot being located in grid
square X;;. From the PDF estimate, one can then compute an
estimate of the entropy associated with the position estimate:
H(X) = Y pl(ai;)logp(wi;).

Let us now consider estimating the PDF and associated
entropy of an estimated robot position = given the frue robot
position x’ for this single beacon case:

+oo
/ p(z, r|z")dr
0

+o0o
x / p(lr)p(rla’)dr
0

plalz’) =

+oo
x / p(rlz)p(rla’)dr @)

using Equation 1.
Given a model for p(x|r) and p(r|z’), one can estimate the
integral shown in Equation 2 using numerical methods.
Since both p(z|r) and p(r|z’) are modeled in this work
using a normal distribution, a closed form equation can be
obtained. Let us assume the measurement model takes the form
of: N(r;z’,0). In this case:

+oo
p(xlx’) o / p(r|z)p(r|z)dr
0
+oo
x N(r;z,0)N(r;2',o)dr . (3)
0
This solution to this integral can be found in a table. After
some algebra one arrives at:

—

V2

Using Equation 4, one can obtain an estimate for the
expected value of the PDF X l’j for the robot’s location given its
true location (i, j) and the pose of beacon k. We now assume
independence between each of the beacons and assume that
the expected PDF X;; for the robot’s location is a product of
the PDFs obtained from each beacon:

plxz’) o N(;0,0) .)

The entropy of the PDF obtained as a function of the true
location of the robot and the beacon poses is then computed
and recorded for that grid square. One obtains an entropy map
of the environment Z = {z;;} where z;; = H(X,;).

C. Sample-based path planning

Given the discretized entropy map Z of the environment,
we are interested in finding a set of paths that connect our
operating regions R. Motivated by classical sample-based
motion planners such as those described in [14], [15] we
uniformly sample N candidate points from our environment.
We then assess paths through these points for robot navigation
purposes.

Given the N sampled points I and the original operating
regions R, we arrive at a set of vertices V' = I U R. We now
compute the pair-wise navigation cost w;; between each pair
1,7 of vertices; i.e. we assign a weight to the undirected edge
e;;. Our weight calculation takes as input: 1.) the entropy that
would be observed in the PDF of the robot if it were able to
successfully execute a straight line transit between the vertices
i and j and 2.) the Euclidean distance between ¢ and j:

wy~ [fHE@)E ©)

where H(x) returns the value for the grid square in the
entropy map Z that contains x. The integral is approximated
by sampling values for x at regular intervals that are much
smaller than the resolution of a single grid square.

For purposes of illustration we consider and later experiment
with two arbitrary cost functions f(H (x)). One uses the cube
of the entropy observed in the grid square:

fi=H(x)’)

and the second returns a value proportional to the entropy
observed, but penalizes areas of high entropy:

H(x), H(z)<d
f2= { C, H(z)>=0o ®)

where § is an appropriately selected threshold and C > §
is some very large constant. See Section VI for experimental
results using these cost functions.

Once the pair-wise cost between all vertices in V' is
computed, the lowest cost path p;; is found between each pair
of operating regions r;,7; € R using Dijkstra’s algorithm.
The path p;; will begin with operating region ¢ and end
with operating region j, but may contain a number of sample
waypoints and other operating regions. The final navigation
graph G consists of the union of all the edges and vertices in
this collection of paths between all operating regions.

D. Summary of Algorithm Inputs and Outputs

Our algorithm for constructing a navigation graph takes the
following inputs:

1) a metric map of the region in which the robot will be

operating; e.g. in occupancy grid format
2) a set of known beacon poses

3) a beacon measurement model
4) a set R of task defined operating regions

The output of the algorithm is a navigation graph G which
specifies a lowest entropy path between any two operating
regions.

V. SYSTEM DETAILS

We use a custom experimental platform for our localization
experiments. We have built a low-cost explorer robot from
off-the-shelf components, and use several acoustic beacons for
range-based localization.

A. Acoustic Beacons

The acoustic beacon is a simple, low-cost module built from
off-the-shelf components (Figure 2). It functions similarly to
the well-known Cricket ultrasonic ranger [16]. We use an Ar-
duino Pro Mini microcontroller, and a Nordic Semiconductor
nRF24L.01+ 2.4 GHz radio for wireless data transmission.
A 40 kHz acoustic pulse is generated by the low-power
Devantech SRF(04 ultrasonic ranger.

The ultrasonic ranger has two piezoelectric transducers: one
used for transmitting an acoustic ping, and the other, ignored
by our beacons, for receiving. The module has a digital pulse-
width interface; we do not perform any analog processing on
the acoustic signal. The ranger’s datasheet claims a reflection
range of 3 cm to 300 cm. In practice, our beacon’s acoustic
range is approximately 15 cm to 600 cm. Communication
delays and processing delays increase the beacon’s minimum
range. Also, our system sends a one-way acoustic signal
rather than reading a reflection, so its maximum range is
double the module’s specified range. The ranger’s resolution
is approximately 3 cm.

Each acoustic transducer is a piezoelectric piston driver with
a resonant frequency of 40 kHz and a resonant bandwidth of
10 kHz. The transducers generate a directional pressure wave
covering an angle of 45°.

The mobile explorer requests a beacon to send an acoustic
ping by sending a message over the 2.4 GHz radio. The
radio transmits a 41-byte packet at 2 Mbps over the air. The
radio’s total over-the-air delay is 164 ps. The receiving radio
automatically transmits an acknowledgment to the transmitter
to indicate that the packet was received. If a packet is dropped
the transmitter automatically attempts to resend it, which
increases the communications delay unpredictably. This can
be compensated for by transmitting the number of retries
and adjusting the receiver’s range calculation accordingly. For
the moment, we ignore the problem due to the radio’s good
reliability at low range.

The firmware operating on the microcontroller implements
a simple control loop interface between the radio and the
ultrasonic ranger. As soon as the beacon receives an echo-
request packet, it transmits a echo-confirm packet and an
acoustic ping.

Each component on the beacon is powered by a 5 V supply,
delivered by a regulator built onto the microcontroller. The
energy is provided by a rechargeable battery pack. Our battery

pack has very high internal resistance, so we place a 470
uF capacitor in parallel with the battery. This ensures that
sufficient power is available when the beacon responds to a
range request. We place a reverse-protection Schottky diode
in series with the battery.

B. Explorer

The explorer robot moves about the environment, fusing
its own odometry with the beacon range data to localize
itself. We use an iRobot Roomba vacuum cleaner as a mobile
platform. The Roomba has a serial interface over which it can
be commanded to drive and over which its sensor data can
be read. The Roomba has several useful sensors, including an
infrared proximity sensor for traveling along walls, an internal
temperature sensor, a bumper sensor, and distance and angle
odometry sensors. We only use the latter two for localization,
but the others could potentially be used as well [17].

The robot’s odometry is calculated using shaft encoders
mounted on the Roomba’s two-wheel differential drive system
to detect how many millimetres each wheel has driven. Due
to slippage in the drive belts and low resolution in the shaft
encoder, the odometry available to an external controller is
imprecise. In particular, the Roomba cannot be driven in a
straight line and the angular error reported by the angle sensor
is inaccurate by several degrees.

We use a Seeed Studio Seeeduino Mega microcontroller
to send commands to the Roomba. The microcontroller is
also responsible for reading range measurements by interacting
with the acoustic beacons. The explorer is equipped with the
same radio and ultrasonic ranger as the acoustic beacons.

The ultrasonic ranger module will not detect an acoustic
ping until after it receives a request to transmit one. If the
explorer actually transmits an acoustic ping it is impossible
to tell if the response it detects is from a beacon or is
its own reflected signal. In order to eliminate interference
from the explorer’s transmitter we removed the transmitting
piezoelectric transducer so that the explorer would not produce
an acoustic signal before engaging its detector. In addition, we
modified the ranger by positioning a Styrofoam sphere 4 cm
above the receiving transducer. The sphere reflects acoustic
pings towards the receiver, enabling the explorer to receive
signals from beacons in any direction.

High-level robot control is provided by a netbook mounted
on top of the Roomba. The netbook runs a script that reads
the position information (i.e. odometry and beacon ranges),
processes the data with a probabilistic filter, and outputs a
movement command back to the microcontroller. Our script
offers options to use a Kalman filter or a particle filter to
estimate the robot’s position.

The explorer’s motion is modeled only for a few discrete
movements. The robot is able to move forward by 10, 50 or
100 cm, and to rotate clockwise or counterclockwise by 5°.

Figure 3 shows the sequence of messages that are passed
between the netbook and explorer over the serial port, and
between the explorer and the beacons during a movement
and update routine. The netbook sends a movement command

Explorer Beacon
Netbook
Microcontroller |-| Radio |::> Radio |- Microcontroller
ri Ultrasonic Ultrasonic
Roomba
Ranger Ranger

Fig. 2. System block diagram.

Base Explorer

Move: an, .
3ngle, distap,
ce
Move the Roomba
L~
[r—
Prepare Sonar

For each Beacon

Range is i

determined
from this
interval .

E ang\® n el, 2,
na distance: vangd'
3 A

Fig. 3. System message passing diagram.

to the explorer, which executes the movement. When the
movement completes the explorer queries each beacon in turn.
During a query, the explorer sends a radio message to the
beacon and the beacon transmits a response. As soon as the
transmitter receives the radio acknowledgment it sends its
acoustic ping. The explorer measures its range to the beacon
by time difference of arrival between the radio message and
the acoustic ping. Once the explorer has queried each beacon
in its range, it packages up the range data and its odometry
readings and sends them to the netbook, which fuses the new
data and produces a new movement command.

C. Data Fusion

We have programmed our netbook to fuse data with Python
implementations of a Kalman filter or a particle filter. Given a
set of pre-defined waypoints, the control software used by the
robot executes periodic course corrections based on its current
state estimate; i.e. the filtering information is used for real-time
navigation. In this section we will provide a brief summary of
these probabilistic techniques.

1) The Kalman Filter: The Kalman filter [18] [19] main-
tains a single estimate of the robot’s pose at time ¢t — 1
represented as an expected value X;_; and a covariance matrix
P;_1. Tt operates in two phases: the prediction phase and
the update phase. Given an input control vector u;_;, the
prediction phase uses the robot’s motion model to predict
where the robot will be at the end of the resulting movement,

generating a new pose estimate with mean X{ and covariance
P,

During the update phase, the pose estimate calculated in
the prediction phase is refined using external sensor data, e.g.
odometry and beacon range data. First the algorithm calculates
a Kalman gain matrix K; for a particular sensor using the
sensor’s measurement model H; and 15,{ . The gain matrix gives
more weight to reliable sensors in the update calculations than
to unreliable sensors. For each sensor, the update phase refines
its estimated pose X ; and covariance Pt’ . After the last sensor,
it produces a final estimate X, and covariance P; that are used
at the next iteration of the filter.

Converting a beacon’s range covariance from polar coordi-
nates to Cartesian coordinates is quite difficult, particularly in
the case where a beacon produces an omnidirectional signal.
Our beacons are directional, but the angle variance can still be
spatially large. We use the simplification suggested by Kantor
and Singh in [20] to handle this problem. To maintain the angle
dimension in our robot’s pose we use the technique described
by Smith and Cheeseman in [21].

2) The Particle Filter: The particle filter [22], [23] operates
similarly to the Kalman filter, but with fewer restrictions: the
original Kalman filter is limited to a Gaussian motion and
measurement model and only maintains a single mode in the
pose estimate.® The particle filter allows arbitrary motion and
measurement models and maintains many estimates of the
robot’s pose in the form of particles.

One benefit of using the particle filter is that the compli-
cations of maintaining the robot’s orientation estimate seen in
the Kalman filter do not apply. It does not use a covariance
matrix. For each particle, the beacons’ polar data are converted
directly to Cartesian coordinates. The cost of using the particle
filter is that the algorithm is linear in the number of particles
in the cloud, and for useful numbers of particles it runs quite
slowly. For this reason, our experiments focus on the Kalman
filter.

VI. RESULTS
A. Simulation Results

We have implemented a simulation framework to evaluate
our navigation graph algorithm. We model the beacons as
angular sections radiating from the beacon location with fixed
range. Figures 4, 5, and 6 show the result of one simulation
result from a trial with 10 randomly placed beacons and 10
randomly placed operating regions. Beacons are represented as
blue stars, navigation locations are black crosses, and operating
regions are red circles. This result was obtained in less than
15 minutes using an I7 CPU with 4 cores and 6 GB of RAM.

The simulations shown in Figures 7 and 8 model a real
section of hallway, placing along the walls four beacons with
set positions and orientations. The walls are represented as
black regions. We only consider an idealized system with a

3Modern versions of the Kalman filter, such as the Extended Kalman filter,
allow non-Gaussian models.

Fig. 4. Estimated entropy throughout the region in Figure 5; black stars
depict beacon locations.

Fig. 5. A path of minimum entropy in a random beacon field with no
obstructions; higher entropy is represented by a darker shade.

rough-cut model of the beacon’s beam shape and acoustic
behaviour (i.e. we ignore reflection and obstruction).

The simulation results show that the cost function from
Equation 7 produces a path that follows the entropy con-
tours closely, whereas the cost function from Equation 8
produces longer straight path segments. This is expected, as
the former function rewards low-entropy paths more than the
latter; however, the later cost function is more suited to the
typical requirements of a robot with poor dead reckoning. The
limitation of a few discrete movements means it is easier to
successfully execute long, straight movements compared to a
larger number of short movements as seen in Figure 7.

Note that in our simulation results the robot aims for low-
entropy regions and avoids high-entropy regions. In each
example presented, the robot is able to traverse a region that
is covered by at least three beacons.

As the number of random navigation locations used to

Fig. 6. Full navigation graph for the situation in Figure 5; black stars depict
beacons, red circles operating regions, and black lines low entropy paths.

Fig. 7. A path of minimum entropy, with entropy variance cubed at all points
(Equation 7).

calculate the navigation graph increases, the mean cost of
the minimum-entropy path decreases. It is intuitive that more
navigation locations will give the algorithm more options
Figure 9 shows the mean costs for paths generated with various
numbers of samples, for the situation shown in Figures 7 (left)
and 8 (right). The entropy values along the best paths in the
two plots in Figure 9 should not be compared numerically as
they are calculated using different cost functions.

B. Results from Hardware

Experimentation using our navigation system demonstrates
the successful fusion of range data obtained from the beacons
into our state estimation system. Due to the poor quality of
the odometry data available on our mobile platform, periodic
range data is essential to continuous mobile operation; without
the range data, the error in the position estimate grows to the
point that the robot can not successfully navigate a standard
office environment. Within a laboratory of 60 square meters in-
strumented with 4 beacons, the robot can successfully execute
predefined sequences of moves and avoid major obstacles.

We programmed the robot to travel to five operating regions
within a 2 m by 3 m area, as a first-order demonstration
of the beacons’ effectiveness (Figure 10). Results using the
Kalman filter are shown in Table I. The experiment included
many rotations, exploiting a weakness in our robot’s motion

Fig. 8. A path of minimum entropy, with entropy variance cubed only in
unseen regions (Equation 8).

x 10*

1300

£ 57

5 5.

o

-

3 56 1250

g s

D

=

S 55

<

> 1200

o 5.4

B

c

w

537160 200 300 400 ‘0 10 260 ~ 300 400
Number of Navigation Locations

Fig. 9. Mean entropy and standard deviation for random paths at various

numbers of samples, using the cost function in Equations 7 (left) and 8 (right).

model to increase the error for each subsequent destination.
The large means in positions 4 and 5 observed when using the
beacons are caused by large outliers resulting from software
bugs; removing these outliers results in a mean error of 9 cm
and 8 cm respectively.

Preliminary experiments testing low entropy routes along a
navigation graph computed for our indoor test environment
have produced mixed results. Often, the final error in the
robot’s position after executing a low entropy path between
two points is slightly worse than a more direct route. An ex-
periment showed a mean error of 33.6 cm (standard deviation
6.2 cm) for a control route with four operating regions and a
mean error of 46.4 cm (standard deviation 5.9 cm) for a low-
entropy route. This is a result of the typically larger number
of operating regions being traversed in a low entropy route,
each of which introduces positional error. For example, in
the results reported above the control route only demanded

TABLE I
TOTAL ERROR IN CM FOR THE ROBOT WITH AND WITHOUT BEACONS.
Error (No Beacons) | Error (With Beacons)
Mean Std. Dev. Mean Std. Dev.
Pos. 1 14.8 7.8 35 52
Pos. 2 | 152 8.6 73 2.8
Pos. 3 | 18.0 7.5 7.0 1.6
Pos. 4 | 24.0 8.8 20.0 229
Pos. 5 | 28.8 9.3 13.3 10.5

Fig. 10. Operating regions and programmed path for the beacon test
summarized in Table I.

three segments whereas the low-entropy route used six. Our
motion model was sufficiently accurate for the robot to traverse
the high-entropy area successfully. Further testing in a larger,
more complex environment using a larger number of beacons
is required to expose flaws in the motion model and to further
test the merit of the low entropy routing.

VII. CONCLUSION

In this paper we have considered navigation issues appro-
priate for a robot carrying out routine tasks and operating in an
environment instrumented with range-only beacons. We have
presented a pragmatic sample-based path planning approach
that can help find low-entropy routes among pre-defined
regions in the environment. Additionally, we have described an
example of a functional system that exercises these concepts
in practice using affordable components and custom state-
estimation software implementing modern Bayesian filtering
approaches.

In future work on our navigation system, we will implement
the unscented Kalman filter [24] which should be better suited
to handling the non-linearities of range data and yet retain a
computational advantage over the particle filter. Additionally,
we will continue to evaluate the navigation graph concept with
further experimental work.

Finally, we plan to use simple (and temporally local)
environmental parameters such as wireless signal strength at
various frequencies, temperature, and ambient light levels to
extract features from the environment and use them to aug-
ment our current state estimation approach. This will require
incorporating algorithms that use environmental parameters for
localizing purposes [17] into our current framework.

VIII. ACKNOWLEDGMENTS

We thank Sean Chester and Rahnuma Islam Nishat for their
comments and help performing experiments. We thank Mantis
Cheng for technical assistance and lab space. We acknowledge

the Natural Sciences and Engineering Research Council of
Canada for their funding.

REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” in AAAI’07: Proc.
of the 22nd National Conf. on Artificial intelligence. Vancouver, British
Columbia, Canada: AAAI Press, 2007.

[2] N.Roy and S. Thrun, “Coastal navigation with mobile robots,” Advances
in Neural Processing Systems, vol. 12, no. 12, pp. 1043-1049, 1999.

[3] D. Meger, D. Marinakis, I. Rekleitis, and G. Dudek, “Inferring a
probability distribution function for the pose of a sensor network using
a mobile robot,” in Proc. of ICRA, Kobe, Japan, May 2009.

[4] D. Marinakis, D. Meger, 1. Rekleitis, and G. Dudek, “Hybrid inference
for sensor network localization using a mobile robot,” in AAAI’07: Proc.
of the 22nd National Conf. on Artificial intelligence. AAAI Press, 2007,
pp- 1089-1094.

[5] D. Jourdan and N. Roy, “Optimal sensor placement for agent localiza-
tion,” ACM Trans. on Sensor Networks, vol. 4, no. 3, August 2008.

[6] S. Martinez and F. Bullo, “Optimal sensor placement and motion
coordination for target tracking,” Automatica, vol. 42, no. 4, pp. 661—
668, 2006.

[7]1 A. Savvides, W. Garber, S. Adlakha, R. Moses, and M. B. Srivastav,
“On the error characteristics of multihop node localization in ad-hoc
sensor networks,” in Proc. of IPSN’03, 2003.

[8] D. B. Jourdan, D. Dardari, and M. Z. Win, “Position error bound for
UWB localization in dense cluttered environments,” in Proc. of IEEE
Int. Conf. on Communications, Instanbul, Turkey, June 2006, pp. 3705—
3710.

[91 M. A. Batalin, G. S. Sukhatme, and M. Hattig, “Mobile robot navigation
using a sensor network,” in Proc. of ICRA, New Orleans, April 2004,
pp. 636-642.

[10] A. Verma, H. Sawant, and J. Tan, “Selection and navigation of mobile
sensor nodes using a sensor network,” Pervasive and Mobile Computing,
vol. 2, no. 1, pp. 65-84, February 2006.

[11] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp.
566-580, 1996.

[12] S. M. LaValle, Planning algorithms. Cambridge: Cambridge University
Press, 2006. [Online]. Available: http://planning.cs.uiuc.edu

[13] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” J. of the ACM, vol. 34,
no. 3, pp. 596-615, July 1987.

[14] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics.
Springer-Verlag, 2008.

[15] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach
(2nd Edition). Prentice Hall, 2002.

[16] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” in Proc. of the 6th Annual Int. Conf. on Mobile
Computing and Networking. New York, New York, USA: ACM, 2000,
pp. 32-43.

[17] D. Marinakis, N. MacMillan, R. Allen, and S. Whitesides, “Simultane-
ous localization and environmental mapping with a sensor network,” in
Proc. of ICRA, Shanghai, China, May 2011.

[18] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” J. of Basic Engineering, vol. 82, no. 1, pp. 35-45, 1960.

[19] G. Welch and G. Bishop, “An introduction to the Kalman filter,” Chapel
Hill, NC, USA, Tech. Rep., 2006.

[20] G. Kantor and S. Singh, “Preliminary results in range-only localization
and mapping,” in Proc. of the IEEE Int. Conference on Robotics and
Automation 2002, vol. 2. 1EEE, 2002, pp. 1818-1823.

[21] R. C. Smith and P. Cheeseman, “On the representation and estimation
of spatial uncertainty,” The Int. J. of Robotics Research, vol. 5, no. 4,
p- 56, 1986.

[22] A. H. Jazwinski, Stochastic processes and filtering theory, Volume 63.
Academic Press, 1970.

[23] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization
for mobile robots,” in [EEE Int. Conf. on Robotics and Automation
(ICRA99), May 1999.

[24] E. A. Wan and R. V. D. Merwe, “The unscented kalman filter for
nonlinear estimation,” in Proc. of IEEE Symposium 2000 (AS-SPCC),
2000, pp. 153-158.

